Programming/Deep Learning

Linear Regression 구현

xxvd 2018. 3. 19. 23:37
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import tensorflow as tf
 
 
x_train = [1,2,3]
y_train = [1,2,3]
 
 
= tf.Variable(tf.random_normal([1]), name = 'weight')
b= tf.Variable(tf.random_normal([1]), name = 'bias')
 
 
Hypothesis = x_train * W +//define Hypothesis
 
 
cost = tf.reduce_mean(tf.square(Hypothesis - y_train)) // 평균값을 냄
 
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01//경사 하강법 , 학습비율 0.1
train = optimizer.minimize(cost) // optimizer의 minimize 함수 호출 하여 cost를 minimize함                                      
sess = tf.Session()
 
sess.run(tf.global_variables_initializer()) //W,b 와 같은 Variable을 initialize 함. Variable들을 사용 할 수 있음 
 
for step in range(2001):
    sess.run(train)
 
    if step % 20 ==0:
    print(step,sess.run(cost),sess.run(W),sess.run(b)) ))
cs